Mister Exam

Sum of series 1/(ln(n))



=

The solution

You have entered [src]
  oo        
 ___        
 \  `       
  \     1   
   )  ------
  /   log(n)
 /__,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{1}{\log{\left(n \right)}}$$
Sum(1/log(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\log{\left(n \right)}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\log{\left(n \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\log{\left(n + 1 \right)} \left|{\frac{1}{\log{\left(n \right)}}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer [src]
Sum(1/log(n), (n, 1, oo))
Sum(1/log(n), (n, 1, oo))
The graph
Sum of series 1/(ln(n))

    Examples of finding the sum of a series