Mister Exam

Other calculators


((-1)^(n+1))/(ln(n+1))

Sum of series ((-1)^(n+1))/(ln(n+1))



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \        n + 1 
  \   (-1)      
  /   ----------
 /    log(n + 1)
/___,           
n = 2           
$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n + 1}}{\log{\left(n + 1 \right)}}$$
Sum((-1)^(n + 1)/log(n + 1), (n, 2, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(-1\right)^{n + 1}}{\log{\left(n + 1 \right)}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\left(-1\right)^{n + 1}}{\log{\left(n + 1 \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\log{\left(n + 2 \right)}}{\log{\left(n + 1 \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The graph
Sum of series ((-1)^(n+1))/(ln(n+1))

    Examples of finding the sum of a series