Mister Exam

Other calculators


(-1)^(n-1)/ln(n+1)

Sum of series (-1)^(n-1)/ln(n+1)



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \        n - 1 
  \   (-1)      
  /   ----------
 /    log(n + 1)
/___,           
n = 1           
n=1(1)n1log(n+1)\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n - 1}}{\log{\left(n + 1 \right)}}
Sum((-1)^(n - 1)/log(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
(1)n1log(n+1)\frac{\left(-1\right)^{n - 1}}{\log{\left(n + 1 \right)}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(1)n1log(n+1)a_{n} = \frac{\left(-1\right)^{n - 1}}{\log{\left(n + 1 \right)}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(log(n+2)log(n+1))1 = \lim_{n \to \infty}\left(\frac{\log{\left(n + 2 \right)}}{\log{\left(n + 1 \right)}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.02.0
The graph
Sum of series (-1)^(n-1)/ln(n+1)

    Examples of finding the sum of a series