Mister Exam

Other calculators


nln(n)sin(n)/(n^6-1)
  • How to use it?

  • Sum of series:
  • 1/(n(n+1)) 1/(n(n+1))
  • 12/(n^2+4*n+3) 12/(n^2+4*n+3)
  • (1-5/n)^n (1-5/n)^n
  • i^n
  • Identical expressions

  • nln(n)sin(n)/(n^ six - one)
  • nln(n) sinus of (n) divide by (n to the power of 6 minus 1)
  • nln(n) sinus of (n) divide by (n to the power of six minus one)
  • nln(n)sin(n)/(n6-1)
  • nlnnsinn/n6-1
  • nln(n)sin(n)/(n⁶-1)
  • nlnnsinn/n^6-1
  • nln(n)sin(n) divide by (n^6-1)
  • Similar expressions

  • nln(n)sin(n)/(n^6+1)

Sum of series nln(n)sin(n)/(n^6-1)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \    n*log(n)*sin(n)
  \   ---------------
  /         6        
 /         n  - 1    
/___,                
n = 1                
n=1nlog(n)sin(n)n61\sum_{n=1}^{\infty} \frac{n \log{\left(n \right)} \sin{\left(n \right)}}{n^{6} - 1}
Sum(((n*log(n))*sin(n))/(n^6 - 1), (n, 1, oo))
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.02-0.02
The answer [src]
  oo                 
____                 
\   `                
 \    n*log(n)*sin(n)
  \   ---------------
  /             6    
 /        -1 + n     
/___,                
n = 1                
n=1nlog(n)sin(n)n61\sum_{n=1}^{\infty} \frac{n \log{\left(n \right)} \sin{\left(n \right)}}{n^{6} - 1}
Sum(n*log(n)*sin(n)/(-1 + n^6), (n, 1, oo))
The graph
Sum of series nln(n)sin(n)/(n^6-1)

    Examples of finding the sum of a series