Mister Exam

Other calculators


12/(n^2+4*n+3)
  • How to use it?

  • Sum of series:
  • 1/(n(n+1)) 1/(n(n+1))
  • 12/(n^2+4*n+3) 12/(n^2+4*n+3)
  • (1-5/n)^n (1-5/n)^n
  • i^n
  • Identical expressions

  • twelve /(n^ two + four *n+ three)
  • 12 divide by (n squared plus 4 multiply by n plus 3)
  • twelve divide by (n to the power of two plus four multiply by n plus three)
  • 12/(n2+4*n+3)
  • 12/n2+4*n+3
  • 12/(n²+4*n+3)
  • 12/(n to the power of 2+4*n+3)
  • 12/(n^2+4n+3)
  • 12/(n2+4n+3)
  • 12/n2+4n+3
  • 12/n^2+4n+3
  • 12 divide by (n^2+4*n+3)
  • Similar expressions

  • 12/(n^2-4*n+3)
  • 12/(n^2+4*n-3)

Sum of series 12/(n^2+4*n+3)



=

The solution

You have entered [src]
  oo              
____              
\   `             
 \         12     
  \   ------------
  /    2          
 /    n  + 4*n + 3
/___,             
n = 1             
n=112(n2+4n)+3\sum_{n=1}^{\infty} \frac{12}{\left(n^{2} + 4 n\right) + 3}
Sum(12/(n^2 + 4*n + 3), (n, 1, oo))
The radius of convergence of the power series
Given number:
12(n2+4n)+3\frac{12}{\left(n^{2} + 4 n\right) + 3}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=12n2+4n+3a_{n} = \frac{12}{n^{2} + 4 n + 3}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(12(n3+(n+1)212+712)n2+4n+3)1 = \lim_{n \to \infty}\left(\frac{12 \left(\frac{n}{3} + \frac{\left(n + 1\right)^{2}}{12} + \frac{7}{12}\right)}{n^{2} + 4 n + 3}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.05.0
The answer [src]
5
55
5
Numerical answer [src]
5.00000000000000000000000000000
5.00000000000000000000000000000
The graph
Sum of series 12/(n^2+4*n+3)

    Examples of finding the sum of a series