Given number:
$$\frac{12}{\left(n^{2} + 4 n\right) + 3}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{12}{n^{2} + 4 n + 3}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{12 \left(\frac{n}{3} + \frac{\left(n + 1\right)^{2}}{12} + \frac{7}{12}\right)}{n^{2} + 4 n + 3}\right)$$
Let's take the limitwe find
True
False