Mister Exam

Other calculators


(1-5/n)^n

Sum of series (1-5/n)^n



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \           n
  \   /    5\ 
  /   |1 - -| 
 /    \    n/ 
/___,         
n = 1         
n=1(15n)n\sum_{n=1}^{\infty} \left(1 - \frac{5}{n}\right)^{n}
Sum((1 - 5/n)^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
(15n)n\left(1 - \frac{5}{n}\right)^{n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(15n)na_{n} = \left(1 - \frac{5}{n}\right)^{n}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(15n)n(15n+1)n11 = \lim_{n \to \infty} \left|{\left(1 - \frac{5}{n}\right)^{n} \left(1 - \frac{5}{n + 1}\right)^{- n - 1}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-5.00.0
The graph
Sum of series (1-5/n)^n

    Examples of finding the sum of a series