Mister Exam

Sum of series nsinn



=

The solution

You have entered [src]
  oo          
 __           
 \ `          
  )   n*sin(n)
 /_,          
n = 1         
n=1nsin(n)\sum_{n=1}^{\infty} n \sin{\left(n \right)}
Sum(n*sin(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
nsin(n)n \sin{\left(n \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=nsin(n)a_{n} = n \sin{\left(n \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(nsin(n)sin(n+1)n+1)1 = \lim_{n \to \infty}\left(\frac{n \left|{\frac{\sin{\left(n \right)}}{\sin{\left(n + 1 \right)}}}\right|}{n + 1}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-1010
Numerical answer
The series diverges
The graph
Sum of series nsinn

    Examples of finding the sum of a series