Mister Exam

Other calculators


sqrt(n)*(n/(4*n-3))^(2*n)
  • How to use it?

  • Sum of series:
  • sqrt(n)*(n/(4*n-3))^(2*n) sqrt(n)*(n/(4*n-3))^(2*n)
  • 100 100
  • 1/(n*ln(n)*ln(ln(n))) 1/(n*ln(n)*ln(ln(n)))
  • 2 2
  • Identical expressions

  • sqrt(n)*(n/(four *n- three))^(two *n)
  • square root of (n) multiply by (n divide by (4 multiply by n minus 3)) to the power of (2 multiply by n)
  • square root of (n) multiply by (n divide by (four multiply by n minus three)) to the power of (two multiply by n)
  • √(n)*(n/(4*n-3))^(2*n)
  • sqrt(n)*(n/(4*n-3))(2*n)
  • sqrtn*n/4*n-32*n
  • sqrt(n)(n/(4n-3))^(2n)
  • sqrt(n)(n/(4n-3))(2n)
  • sqrtnn/4n-32n
  • sqrtnn/4n-3^2n
  • sqrt(n)*(n divide by (4*n-3))^(2*n)
  • Similar expressions

  • sqrt(n)*(n/(4*n+3))^(2*n)

Sum of series sqrt(n)*(n/(4*n-3))^(2*n)



=

The solution

You have entered [src]
  oo                    
____                    
\   `                   
 \                   2*n
  \     ___ /   n   \   
  /   \/ n *|-------|   
 /          \4*n - 3/   
/___,                   
n = 1                   
$$\sum_{n=1}^{\infty} \sqrt{n} \left(\frac{n}{4 n - 3}\right)^{2 n}$$
Sum(sqrt(n)*(n/(4*n - 3))^(2*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\sqrt{n} \left(\frac{n}{4 n - 3}\right)^{2 n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sqrt{n} \left(\frac{n}{4 n - 3}\right)^{2 n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n} \left(\frac{n + 1}{4 n + 1}\right)^{- 2 n - 2} \left|{\left(\frac{n}{4 n - 3}\right)^{2 n}}\right|}{\sqrt{n + 1}}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
Numerical answer [src]
1.03875208282771021362313396863
1.03875208282771021362313396863
The graph
Sum of series sqrt(n)*(n/(4*n-3))^(2*n)

    Examples of finding the sum of a series