Given number:
$$\sqrt{n} \left(\frac{n}{4 n - 3}\right)^{2 n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \sqrt{n} \left(\frac{n}{4 n - 3}\right)^{2 n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n} \left(\frac{n + 1}{4 n + 1}\right)^{- 2 n - 2} \left|{\left(\frac{n}{4 n - 3}\right)^{2 n}}\right|}{\sqrt{n + 1}}\right)$$
Let's take the limitwe find
False
False