Mister Exam

Other calculators


sin(sin(n)/n^(1/3))

Sum of series sin(sin(n)/n^(1/3))



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \       /sin(n)\
  \   sin|------|
  /      |3 ___ |
 /       \\/ n  /
/___,            
n = 1            
n=1sin(sin(n)n3)\sum_{n=1}^{\infty} \sin{\left(\frac{\sin{\left(n \right)}}{\sqrt[3]{n}} \right)}
Sum(sin(sin(n)/n^(1/3)), (n, 1, oo))
The radius of convergence of the power series
Given number:
sin(sin(n)n3)\sin{\left(\frac{\sin{\left(n \right)}}{\sqrt[3]{n}} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=sin(sin(n)n3)a_{n} = \sin{\left(\frac{\sin{\left(n \right)}}{\sqrt[3]{n}} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnsin(sin(n)n3)sin(sin(n+1)n+13)1 = \lim_{n \to \infty} \left|{\frac{\sin{\left(\frac{\sin{\left(n \right)}}{\sqrt[3]{n}} \right)}}{\sin{\left(\frac{\sin{\left(n + 1 \right)}}{\sqrt[3]{n + 1}} \right)}}}\right|
Let's take the limit
we find
1=limnsin(sin(n)n3)sin(sin(n+1)n+13)1 = \lim_{n \to \infty} \left|{\frac{\sin{\left(\frac{\sin{\left(n \right)}}{\sqrt[3]{n}} \right)}}{\sin{\left(\frac{\sin{\left(n + 1 \right)}}{\sqrt[3]{n + 1}} \right)}}}\right|
False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.502
The graph
Sum of series sin(sin(n)/n^(1/3))

    Examples of finding the sum of a series