Mister Exam

Sum of series cos2n



=

The solution

You have entered [src]
  oo          
 __           
 \ `          
  )   cos(2*n)
 /_,          
n = 1         
n=1cos(2n)\sum_{n=1}^{\infty} \cos{\left(2 n \right)}
Sum(cos(2*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
cos(2n)\cos{\left(2 n \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=cos(2n)a_{n} = \cos{\left(2 n \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limncos(2n)cos(2n+2)1 = \lim_{n \to \infty} \left|{\frac{\cos{\left(2 n \right)}}{\cos{\left(2 n + 2 \right)}}}\right|
Let's take the limit
we find
1=limncos(2n)cos(2n+2)1 = \lim_{n \to \infty} \left|{\frac{\cos{\left(2 n \right)}}{\cos{\left(2 n + 2 \right)}}}\right|
False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50-2
Numerical answer
The series diverges
The graph
Sum of series cos2n

    Examples of finding the sum of a series