Mister Exam

Other calculators


cos(npi)/5^n
  • How to use it?

  • Sum of series:
  • cos(npi)/5^n cos(npi)/5^n
  • 4x
  • cos2n cos2n
  • n^(2n)/n! n^(2n)/n!
  • Identical expressions

  • cos(npi)/ five ^n
  • co sinus of e of (n Pi ) divide by 5 to the power of n
  • co sinus of e of (n Pi ) divide by five to the power of n
  • cos(npi)/5n
  • cosnpi/5n
  • cosnpi/5^n
  • cos(npi) divide by 5^n

Sum of series cos(npi)/5^n



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \    cos(n*pi)
  \   ---------
  /        n   
 /        5    
/___,          
n = 1          
n=1cos(πn)5n\sum_{n=1}^{\infty} \frac{\cos{\left(\pi n \right)}}{5^{n}}
Sum(cos(n*pi)/5^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
cos(πn)5n\frac{\cos{\left(\pi n \right)}}{5^{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=cos(πn)a_{n} = \cos{\left(\pi n \right)}
and
x0=5x_{0} = -5
,
d=1d = -1
,
c=0c = 0
then
1R=~(5+limncos(πn)cos(π(n+1)))\frac{1}{R} = \tilde{\infty} \left(-5 + \lim_{n \to \infty} \left|{\frac{\cos{\left(\pi n \right)}}{\cos{\left(\pi \left(n + 1\right) \right)}}}\right|\right)
Let's take the limit
we find
1R=~(5+limncos(πn)cos(π(n+1)))\frac{1}{R} = \tilde{\infty} \left(-5 + \lim_{n \to \infty} \left|{\frac{\cos{\left(\pi n \right)}}{\cos{\left(\pi \left(n + 1\right) \right)}}}\right|\right)
R=0(5+limncos(πn)cos(π(n+1)))1R = 0 \left(-5 + \lim_{n \to \infty} \left|{\frac{\cos{\left(\pi n \right)}}{\cos{\left(\pi \left(n + 1\right) \right)}}}\right|\right)^{-1}
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-0.25-0.15
The answer [src]
  oo               
 ___               
 \  `              
  \    -n          
  /   5  *cos(pi*n)
 /__,              
n = 1              
n=15ncos(πn)\sum_{n=1}^{\infty} 5^{- n} \cos{\left(\pi n \right)}
Sum(5^(-n)*cos(pi*n), (n, 1, oo))
Numerical answer [src]
-0.166666666666666666666666666667
-0.166666666666666666666666666667
The graph
Sum of series cos(npi)/5^n

    Examples of finding the sum of a series