Mister Exam

Sum of series xi



=

The solution

You have entered [src]
  oo     
 __      
 \ `     
  )   x*i
 /_,     
i = 2    
i=2ix\sum_{i=2}^{\infty} i x
Sum(x*i, (i, 2, oo))
The radius of convergence of the power series
Given number:
ixi x
It is a series of species
ai(cxx0)dia_{i} \left(c x - x_{0}\right)^{d i}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limiaiai+1cR^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}
In this case
ai=ixa_{i} = i x
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limi(ii+1)1 = \lim_{i \to \infty}\left(\frac{i}{i + 1}\right)
Let's take the limit
we find
True

False
The answer [src]
oo*x
x\infty x
oo*x

    Examples of finding the sum of a series