Mister Exam

Other calculators


cos(2n)/n^2

Sum of series cos(2n)/n^2



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \    cos(2*n)
  \   --------
  /       2   
 /       n    
/___,         
n = 1         
n=1cos(2n)n2\sum_{n=1}^{\infty} \frac{\cos{\left(2 n \right)}}{n^{2}}
Sum(cos(2*n)/n^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
cos(2n)n2\frac{\cos{\left(2 n \right)}}{n^{2}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=cos(2n)n2a_{n} = \frac{\cos{\left(2 n \right)}}{n^{2}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)2cos(2n)cos(2n+2)n2)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2} \left|{\frac{\cos{\left(2 n \right)}}{\cos{\left(2 n + 2 \right)}}}\right|}{n^{2}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-0.6-0.4
The graph
Sum of series cos(2n)/n^2

    Examples of finding the sum of a series