Let's highlight the perfect square of the square three-member $$\left(- 8 p^{2} + 6 p\right) + 1$$ To do this, let's use the formula $$a p^{2} + b p + c = a \left(m + p\right)^{2} + n$$ where $$m = \frac{b}{2 a}$$ $$n = \frac{4 a c - b^{2}}{4 a}$$ In this case $$a = -8$$ $$b = 6$$ $$c = 1$$ Then $$m = - \frac{3}{8}$$ $$n = \frac{17}{8}$$ So, $$\frac{17}{8} - 8 \left(p - \frac{3}{8}\right)^{2}$$