Mister Exam

# How do you (t^4+9)/(t^4+9t^2) in partial fractions?

An expression to simplify:

### The solution

You have entered [src]
   4
t  + 9
---------
4      2
t  + 9*t 
$$\frac{t^{4} + 9}{t^{4} + 9 t^{2}}$$
(t^4 + 9)/(t^4 + 9*t^2)
Fraction decomposition [src]
1 + t^(-2) - 10/(9 + t^2)
$$1 - \frac{10}{t^{2} + 9} + \frac{1}{t^{2}}$$
    1      10
1 + -- - ------
2        2
t    9 + t 
General simplification [src]
        4
9 + t
-----------
2 /     2\
t *\9 + t /
$$\frac{t^{4} + 9}{t^{2} \left(t^{2} + 9\right)}$$
(9 + t^4)/(t^2*(9 + t^2))
Combinatorics [src]
        4
9 + t
-----------
2 /     2\
t *\9 + t /
$$\frac{t^{4} + 9}{t^{2} \left(t^{2} + 9\right)}$$
(9 + t^4)/(t^2*(9 + t^2))
(9.0 + t^4)/(t^4 + 9.0*t^2)
(9.0 + t^4)/(t^4 + 9.0*t^2)
Common denominator [src]
            2
-9 + 9*t
1 - ---------
4      2
t  + 9*t 
$$- \frac{9 t^{2} - 9}{t^{4} + 9 t^{2}} + 1$$
1 - (-9 + 9*t^2)/(t^4 + 9*t^2)
Combining rational expressions [src]
        4
9 + t
-----------
2 /     2\
t *\9 + t /
$$\frac{t^{4} + 9}{t^{2} \left(t^{2} + 9\right)}$$
(9 + t^4)/(t^2*(9 + t^2))