Mister Exam

# Least common denominator a3*b3/a3-a2*b*b2-a2/4*ab2

An expression to simplify:

### The solution

You have entered [src]
a3*b3             a2    2
----- - a2*b*b2 - --*a*b
a3              4      
$$- b^{2} a \frac{a_{2}}{4} + \left(- b_{2} a_{2} b + \frac{a_{3} b_{3}}{a_{3}}\right)$$
(a3*b3)/a3 - a2*b*b2 - (a2/4)*a*b^2
General simplification [src]
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4
Common denominator [src]
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4
Powers [src]
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4
Rational denominator [src]
                   2
4*a3*b3 - a*a2*a3*b  - 4*a2*a3*b*b2
-----------------------------------
4*a3               
$$\frac{- a a_{2} a_{3} b^{2} - 4 a_{2} a_{3} b b_{2} + 4 a_{3} b_{3}}{4 a_{3}}$$
(4*a3*b3 - a*a2*a3*b^2 - 4*a2*a3*b*b2)/(4*a3)
Combinatorics [src]
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4
b3 - a2*b*b2 - 0.25*a*a2*b^2
b3 - a2*b*b2 - 0.25*a*a2*b^2
Combining rational expressions [src]
             2
4*b3 - a*a2*b  - 4*a2*b*b2
--------------------------
4             
$$\frac{- a a_{2} b^{2} - 4 a_{2} b b_{2} + 4 b_{3}}{4}$$
(4*b3 - a*a2*b^2 - 4*a2*b*b2)/4
Assemble expression [src]
        /           2\
|        a*b |
b3 + a2*|-b*b2 - ----|
\         4  /
$$a_{2} \left(- \frac{a b^{2}}{4} - b b_{2}\right) + b_{3}$$
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4
Trigonometric part [src]
                     2
a*a2*b
b3 - a2*b*b2 - -------
4   
$$- \frac{a a_{2} b^{2}}{4} - a_{2} b b_{2} + b_{3}$$
b3 - a2*b*b2 - a*a2*b^2/4