Mister Exam

Factor polynomial x^4-9

An expression to simplify:

The solution

You have entered [src]
 4    
x  - 9
$$x^{4} - 9$$
x^4 - 9
Factorization [src]
/      ___\ /      ___\ /        ___\ /        ___\
\x + \/ 3 /*\x - \/ 3 /*\x + I*\/ 3 /*\x - I*\/ 3 /
$$\left(x - \sqrt{3}\right) \left(x + \sqrt{3}\right) \left(x + \sqrt{3} i\right) \left(x - \sqrt{3} i\right)$$
(((x + sqrt(3))*(x - sqrt(3)))*(x + i*sqrt(3)))*(x - i*sqrt(3))
Combinatorics [src]
/      2\ /     2\
\-3 + x /*\3 + x /
$$\left(x^{2} - 3\right) \left(x^{2} + 3\right)$$
(-3 + x^2)*(3 + x^2)
Numerical answer [src]
-9.0 + x^4
-9.0 + x^4