General simplification
[src]
/ k / k k k \ k \
n*\- p + k*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
2
k
$$\frac{n \left(k \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*(-p^k + k*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p)) - (1 + p)^k*(1 + k))/k^2
n*((1.0 + p)^k + p^k*log(p) + (1.0 + p)^k*(1.0 + k)*log(1 + p))/k - n*(p^k + (1.0 + p)^k*(1.0 + k))/k^2
n*((1.0 + p)^k + p^k*log(p) + (1.0 + p)^k*(1.0 + k)*log(1 + p))/k - n*(p^k + (1.0 + p)^k*(1.0 + k))/k^2
Rational denominator
[src]
2 / k k k \ / k k \
n*k *\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - k*n*\p + (1 + p) *(1 + k)/
---------------------------------------------------------------------------------------
3
k
$$\frac{k^{2} n \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right) - k n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{3}}$$
(n*k^2*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p)) - k*n*(p^k + (1 + p)^k*(1 + k)))/k^3
k k k k
- n*p - n*(1 + p) + k*n*p *log(p) + k*n*(1 + p) *log(1 + p) k
------------------------------------------------------------- + n*(1 + p) *log(1 + p)
2
k
$$n \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \frac{k n p^{k} \log{\left(p \right)} + k n \left(p + 1\right)^{k} \log{\left(p + 1 \right)} - n p^{k} - n \left(p + 1\right)^{k}}{k^{2}}$$
(-n*p^k - n*(1 + p)^k + k*n*p^k*log(p) + k*n*(1 + p)^k*log(1 + p))/k^2 + n*(1 + p)^k*log(1 + p)
/ k k k k 2 k \
n*\- p - (1 + p) + k*p *log(p) + k*(1 + p) *log(1 + p) + k *(1 + p) *log(1 + p)/
----------------------------------------------------------------------------------
2
k
$$\frac{n \left(k^{2} \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + k p^{k} \log{\left(p \right)} + k \left(p + 1\right)^{k} \log{\left(p + 1 \right)} - p^{k} - \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*(-p^k - (1 + p)^k + k*p^k*log(p) + k*(1 + p)^k*log(1 + p) + k^2*(1 + p)^k*log(1 + p))/k^2
/ k k k \ / k k \
n*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ n*\p + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
k 2
k
$$\frac{n \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right)}{k} - \frac{n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p))/k - n*(p^k + (1 + p)^k*(1 + k))/k^2
/ k k k \ / k k \
n*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ n*\p + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
k 2
k
$$\frac{n \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right)}{k} - \frac{n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p))/k - n*(p^k + (1 + p)^k*(1 + k))/k^2
Combining rational expressions
[src]
/ k / k k k \ k \
n*\- p + k*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ - (1 + p) *(1 + k)/
------------------------------------------------------------------------------------
2
k
$$\frac{n \left(k \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right) - p^{k} - \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*(-p^k + k*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p)) - (1 + p)^k*(1 + k))/k^2
Assemble expression
[src]
/ k k k k k \
|(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p) p + (1 + p) *(1 + k)|
n*|-------------------------------------------------- - ---------------------|
| k 2 |
\ k /
$$n \left(\frac{p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}}{k} - \frac{p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}}{k^{2}}\right)$$
/ k k k \ / k k \
n*\(1 + p) + p *log(p) + (1 + p) *(1 + k)*log(1 + p)/ n*\p + (1 + p) *(1 + k)/
------------------------------------------------------ - -------------------------
k 2
k
$$\frac{n \left(p^{k} \log{\left(p \right)} + \left(k + 1\right) \left(p + 1\right)^{k} \log{\left(p + 1 \right)} + \left(p + 1\right)^{k}\right)}{k} - \frac{n \left(p^{k} + \left(k + 1\right) \left(p + 1\right)^{k}\right)}{k^{2}}$$
n*((1 + p)^k + p^k*log(p) + (1 + p)^k*(1 + k)*log(1 + p))/k - n*(p^k + (1 + p)^k*(1 + k))/k^2