Mister Exam

Factor polynomial e^j120*6+e^j240*10+10

An expression to simplify:

The solution

You have entered [src]
 j120      j240
E    *6 + E    *10 + 10
$$\left(6 e^{j_{120}} + 10 e^{j_{240}}\right) + 10$$
E^j120*6 + E^j240*10 + 10
General simplification [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
10.0 + 6.0*2.71828182845905^j120 + 10.0*2.71828182845905^j240
10.0 + 6.0*2.71828182845905^j120 + 10.0*2.71828182845905^j240
Combinatorics [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
Assemble expression [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
Rational denominator [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
Combining rational expressions [src]
  /       j120      j240\
2*\5 + 3*e     + 5*e    /
$$2 \left(3 e^{j_{120}} + 5 e^{j_{240}} + 5\right)$$
2*(5 + 3*exp(j120) + 5*exp(j240))
Common denominator [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
Trigonometric part [src]
                          j120                         j240
10 + 6*(cosh(1) + sinh(1))     + 10*(cosh(1) + sinh(1))    
$$6 \left(\sinh{\left(1 \right)} + \cosh{\left(1 \right)}\right)^{j_{120}} + 10 \left(\sinh{\left(1 \right)} + \cosh{\left(1 \right)}\right)^{j_{240}} + 10$$
10 + 6*cosh(j120) + 6*sinh(j120) + 10*cosh(j240) + 10*sinh(j240)
$$6 \sinh{\left(j_{120} \right)} + 10 \sinh{\left(j_{240} \right)} + 6 \cosh{\left(j_{120} \right)} + 10 \cosh{\left(j_{240} \right)} + 10$$
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)
Powers [src]
        j120       j240
10 + 6*e     + 10*e    
$$6 e^{j_{120}} + 10 e^{j_{240}} + 10$$
10 + 6*exp(j120) + 10*exp(j240)