General simplification
[src]
/ 2 \
k1*k3*p + k5*(1 + p*t3)*\k2 + k1*k4*p *(1 + p*t4)/
--------------------------------------------------
1 + p*t3
$$\frac{k_{1} k_{3} p + k_{5} \left(p t_{3} + 1\right) \left(k_{1} k_{4} p^{2} \left(p t_{4} + 1\right) + k_{2}\right)}{p t_{3} + 1}$$
(k1*k3*p + k5*(1 + p*t3)*(k2 + k1*k4*p^2*(1 + p*t4)))/(1 + p*t3)
/k2 \ k1*k3*p
k5*p*|-- + k1*k4*p*(1 + p*t4)| + --------
\p / 1 + p*t3
$$\frac{k_{1} k_{3} p}{p t_{3} + 1} + k_{5} p \left(k_{1} k_{4} p \left(p t_{4} + 1\right) + \frac{k_{2}}{p}\right)$$
k5*p*(k2/p + k1*k4*p*(1 + p*t4)) + k1*k3*p/(1 + p*t3)
Rational denominator
[src]
2 / 2 \
k1*k3*p + k5*p*(1 + p*t3)*\k2 + k1*k4*p *(1 + p*t4)/
-----------------------------------------------------
p*(1 + p*t3)
$$\frac{k_{1} k_{3} p^{2} + k_{5} p \left(p t_{3} + 1\right) \left(k_{1} k_{4} p^{2} \left(p t_{4} + 1\right) + k_{2}\right)}{p \left(p t_{3} + 1\right)}$$
(k1*k3*p^2 + k5*p*(1 + p*t3)*(k2 + k1*k4*p^2*(1 + p*t4)))/(p*(1 + p*t3))
/k2 \ k1*k3*p
k5*p*|-- + k1*k4*p*(1 + p*t4)| + --------
\p / 1 + p*t3
$$\frac{k_{1} k_{3} p}{p t_{3} + 1} + k_{5} p \left(k_{1} k_{4} p \left(p t_{4} + 1\right) + \frac{k_{2}}{p}\right)$$
k5*p*(k2/p + k1*k4*p*(1 + p*t4)) + k1*k3*p/(1 + p*t3)
k5*p*(k2/p + k1*k4*p*(1.0 + p*t4)) + k1*k3*p/(1.0 + p*t3)
k5*p*(k2/p + k1*k4*p*(1.0 + p*t4)) + k1*k3*p/(1.0 + p*t3)
Combining rational expressions
[src]
/ 2 \
k1*k3*p + k5*(1 + p*t3)*\k2 + k1*k4*p *(1 + p*t4)/
--------------------------------------------------
1 + p*t3
$$\frac{k_{1} k_{3} p + k_{5} \left(p t_{3} + 1\right) \left(k_{1} k_{4} p^{2} \left(p t_{4} + 1\right) + k_{2}\right)}{p t_{3} + 1}$$
(k1*k3*p + k5*(1 + p*t3)*(k2 + k1*k4*p^2*(1 + p*t4)))/(1 + p*t3)
k1*k3*p 2 3
k2*k5 + -------- + k1*k4*k5*p + k1*k4*k5*t4*p
1 + p*t3
$$\frac{k_{1} k_{3} p}{p t_{3} + 1} + k_{1} k_{4} k_{5} p^{3} t_{4} + k_{1} k_{4} k_{5} p^{2} + k_{2} k_{5}$$
k2*k5 + k1*k3*p/(1 + p*t3) + k1*k4*k5*p^2 + k1*k4*k5*t4*p^3
2 3 3 4
k2*k5 + k1*k3*p + k1*k4*k5*p + k2*k5*p*t3 + k1*k4*k5*t3*p + k1*k4*k5*t4*p + k1*k4*k5*t3*t4*p
------------------------------------------------------------------------------------------------
1 + p*t3
$$\frac{k_{1} k_{3} p + k_{1} k_{4} k_{5} p^{4} t_{3} t_{4} + k_{1} k_{4} k_{5} p^{3} t_{3} + k_{1} k_{4} k_{5} p^{3} t_{4} + k_{1} k_{4} k_{5} p^{2} + k_{2} k_{5} p t_{3} + k_{2} k_{5}}{p t_{3} + 1}$$
(k2*k5 + k1*k3*p + k1*k4*k5*p^2 + k2*k5*p*t3 + k1*k4*k5*t3*p^3 + k1*k4*k5*t4*p^3 + k1*k4*k5*t3*t4*p^4)/(1 + p*t3)
Assemble expression
[src]
/k2 \ k1*k3*p
k5*p*|-- + k1*k4*p*(1 + p*t4)| + --------
\p / 1 + p*t3
$$\frac{k_{1} k_{3} p}{p t_{3} + 1} + k_{5} p \left(k_{1} k_{4} p \left(p t_{4} + 1\right) + \frac{k_{2}}{p}\right)$$
/ /k2 \ k1*k3 \
p*|k5*|-- + k1*k4*p*(1 + p*t4)| + --------|
\ \p / 1 + p*t3/
$$p \left(\frac{k_{1} k_{3}}{p t_{3} + 1} + k_{5} \left(k_{1} k_{4} p \left(p t_{4} + 1\right) + \frac{k_{2}}{p}\right)\right)$$
p*(k5*(k2/p + k1*k4*p*(1 + p*t4)) + k1*k3/(1 + p*t3))