The perfect square
Let's highlight the perfect square of the square three-member
$$\left(z^{2} - 20 z\right) + 104$$
To do this, let's use the formula
$$a z^{2} + b z + c = a \left(m + z\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -20$$
$$c = 104$$
Then
$$m = -10$$
$$n = 4$$
So,
$$\left(z - 10\right)^{2} + 4$$