$$\left(x - 3\right) \left(x - 1\right)$$
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{2} + 4 y\right) - 3$$
To do this, let's use the formula
$$a y^{2} + b y + c = a \left(m + y\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 4$$
$$c = -3$$
Then
$$m = -2$$
$$n = 1$$
So,
$$1 - \left(y - 2\right)^{2}$$
General simplification
[src]
$$- y^{2} + 4 y - 3$$
Assemble expression
[src]
$$- y^{2} + 4 y - 3$$
Rational denominator
[src]
$$- y^{2} + 4 y - 3$$
$$- \left(y - 3\right) \left(y - 1\right)$$
Combining rational expressions
[src]
$$y \left(4 - y\right) - 3$$