General simplification
[src]
$$\frac{x^{4}}{2} + 2 x + 4$$
Fraction decomposition
[src]
$$\frac{x^{4}}{2} + 2 x + 4$$
/ _____________________________________________________________________________________________________________________\ / _____________________________________________________________________________________________________________________\ / _____________________________________________________________________________________________________________________\ / _____________________________________________________________________________________________________________________ \
| / ________________ | | / ________________ | | / ________________ | | / ________________ |
| / / ______ | | / / ______ | | / / ______ | | / / ______ |
| / / I*\/ 1455 8 16 | | / 8 / I*\/ 1455 16 | | / 8 / I*\/ 1455 16 | | / / I*\/ 1455 8 16 |
| / - 2*3 / 1 + ---------- + ------------------------------------------------------------- - ----------------------- | | / - ------------------------------------------------------------- - 2*3 / 1 + ---------- - ----------------------- | | / - ------------------------------------------------------------- - 2*3 / 1 + ---------- - ----------------------- | | / - 2*3 / 1 + ---------- + ------------------------------------------------------------- - ----------------------- |
| ___________________________________________________ / \/ 9 ___________________________________________________ ________________ | | ___________________________________________________ / ___________________________________________________ \/ 9 ________________ | | ___________________________________________________ / ___________________________________________________ \/ 9 ________________ | | / \/ 9 ___________________________________________________ ________________ ___________________________________________________|
| / ________________ / / ________________ / ______ | | / ________________ / / ________________ / ______ | | / ________________ / / ________________ / ______ | | / / ________________ / ______ / ________________ |
| / / ______ / / / ______ / I*\/ 1455 | | / / ______ / / / ______ / I*\/ 1455 | | / / ______ / / / ______ / I*\/ 1455 | | / / / ______ / I*\/ 1455 / / ______ |
| / / I*\/ 1455 16 / / / I*\/ 1455 16 3*3 / 1 + ---------- | | / / I*\/ 1455 16 / / / I*\/ 1455 16 3*3 / 1 + ---------- | | / / I*\/ 1455 16 / / / I*\/ 1455 16 3*3 / 1 + ---------- | | / / / I*\/ 1455 16 3*3 / 1 + ---------- / / I*\/ 1455 16 |
| / 2*3 / 1 + ---------- + ----------------------- / / 2*3 / 1 + ---------- + ----------------------- \/ 9 | | / 2*3 / 1 + ---------- + ----------------------- / / 2*3 / 1 + ---------- + ----------------------- \/ 9 | | / 2*3 / 1 + ---------- + ----------------------- / / 2*3 / 1 + ---------- + ----------------------- \/ 9 | | / / 2*3 / 1 + ---------- + ----------------------- \/ 9 / 2*3 / 1 + ---------- + ----------------------- |
| / \/ 9 ________________ / / \/ 9 ________________ | | / \/ 9 ________________ / / \/ 9 ________________ | | / \/ 9 ________________ / / \/ 9 ________________ | | / / \/ 9 ________________ / \/ 9 ________________ |
| / / ______ / / / ______ | | / / ______ / / / ______ | | / / ______ / / / ______ | | / / / ______ / / ______ |
| / / I*\/ 1455 / / / I*\/ 1455 | | / / I*\/ 1455 / / / I*\/ 1455 | | / / I*\/ 1455 / / / I*\/ 1455 | | / / / I*\/ 1455 / / I*\/ 1455 |
| / 3*3 / 1 + ---------- / / 3*3 / 1 + ---------- | | / 3*3 / 1 + ---------- / / 3*3 / 1 + ---------- | | / 3*3 / 1 + ---------- / / 3*3 / 1 + ---------- | | / / 3*3 / 1 + ---------- / 3*3 / 1 + ---------- |
| \/ \/ 9 \/ \/ \/ 9 | | \/ \/ 9 \/ \/ \/ 9 | | \/ \/ 9 \/ \/ \/ 9 | | \/ \/ \/ 9 \/ \/ 9 |
|x + ------------------------------------------------------------- + ------------------------------------------------------------------------------------------------------------------------------------|*|x + - ------------------------------------------------------------- + ------------------------------------------------------------------------------------------------------------------------------------|*|x + - ------------------------------------------------------------- - ------------------------------------------------------------------------------------------------------------------------------------|*|x + - ------------------------------------------------------------------------------------------------------------------------------------ + -------------------------------------------------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
$$\left(x + \left(\frac{\sqrt{- 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}} - \frac{8}{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}} - \frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}}{2} - \frac{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}{2}\right)\right) \left(x + \left(\frac{\sqrt{- 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}} + \frac{8}{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}} - \frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}}{2} + \frac{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}{2}\right)\right) \left(x + \left(- \frac{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}{2} - \frac{\sqrt{- 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}} - \frac{8}{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}} - \frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}}{2}\right)\right) \left(x + \left(\frac{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}{2} - \frac{\sqrt{- 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}} + \frac{8}{\sqrt{\frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}} + 2 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}} - \frac{16}{3 \sqrt[3]{1 + \frac{\sqrt{1455} i}{9}}}}}{2}\right)\right)$$
(((x + sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2 + sqrt(-2*(1 + i*sqrt(1455)/9)^(1/3) + 8/sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3))) - 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2)*(x - sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2 + sqrt(-8/sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3))) - 2*(1 + i*sqrt(1455)/9)^(1/3) - 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2))*(x - sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2 - sqrt(-8/sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3))) - 2*(1 + i*sqrt(1455)/9)^(1/3) - 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2))*(x - sqrt(-2*(1 + i*sqrt(1455)/9)^(1/3) + 8/sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3))) - 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2 + sqrt(2*(1 + i*sqrt(1455)/9)^(1/3) + 16/(3*(1 + i*sqrt(1455)/9)^(1/3)))/2)
$$\frac{x^{4}}{2} + 2 x + 4$$
$$\frac{x^{4}}{2} + 2 x + 4$$
$$\frac{x^{4}}{2} + 2 x + 4$$
Assemble expression
[src]
$$\frac{x^{4}}{2} + 2 x + 4$$
Combining rational expressions
[src]
4 / 3\
16 + x + 4*x + x*\4 + x /
--------------------------
4
$$\frac{x^{4} + x \left(x^{3} + 4\right) + 4 x + 16}{4}$$
(16 + x^4 + 4*x + x*(4 + x^3))/4
$$\frac{x^{4}}{2} + 2 x + 4$$
Rational denominator
[src]
4
16 + 2*x + 8*x
---------------
4
$$\frac{2 x^{4} + 8 x + 16}{4}$$