/ / / _____\\ / / _____\\\ / / / _____\\ / / _____\\\ / / / _____\\ / / _____\\\ / / / _____\\ / / _____\\\
| | |\/ 251 || | |\/ 251 ||| | | |\/ 251 || | |\/ 251 ||| | | |\/ 251 || | |\/ 251 ||| | | |\/ 251 || | |\/ 251 |||
| |atan|-------|| |atan|-------||| | |atan|-------|| |atan|-------||| | |atan|-------|| |atan|-------||| | |atan|-------|| |atan|-------|||
| 3/4 4 ____ | \ 3 /| 3/4 4 ____ | \ 3 /|| | 3/4 4 ____ | \ 3 /| 3/4 4 ____ | \ 3 /|| | 3/4 4 ____ | \ 3 /| 3/4 4 ____ | \ 3 /|| | 3/4 4 ____ | \ 3 /| 3/4 4 ____ | \ 3 /||
| 5 *\/ 13 *cos|-------------| I*5 *\/ 13 *sin|-------------|| | 5 *\/ 13 *cos|-------------| I*5 *\/ 13 *sin|-------------|| | 5 *\/ 13 *cos|-------------| I*5 *\/ 13 *sin|-------------|| | 5 *\/ 13 *cos|-------------| I*5 *\/ 13 *sin|-------------||
| \ 2 / \ 2 /| | \ 2 / \ 2 /| | \ 2 / \ 2 /| | \ 2 / \ 2 /|
|p + ------------------------------ + --------------------------------|*|p + ------------------------------ - --------------------------------|*|p + - ------------------------------ + --------------------------------|*|p + - ------------------------------ - --------------------------------|
\ 5 5 / \ 5 5 / \ 5 5 / \ 5 5 /
$$\left(p + \left(\frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5} - \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5}\right)\right) \left(p + \left(\frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5} + \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5}\right)\right) \left(p + \left(- \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5} + \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5}\right)\right) \left(p + \left(- \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5} - \frac{\sqrt[4]{13} \cdot 5^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{251}}{3} \right)}}{2} \right)}}{5}\right)\right)$$
(((p + 5^(3/4)*13^(1/4)*cos(atan(sqrt(251)/3)/2)/5 + i*5^(3/4)*13^(1/4)*sin(atan(sqrt(251)/3)/2)/5)*(p + 5^(3/4)*13^(1/4)*cos(atan(sqrt(251)/3)/2)/5 - i*5^(3/4)*13^(1/4)*sin(atan(sqrt(251)/3)/2)/5))*(p - 5^(3/4)*13^(1/4)*cos(atan(sqrt(251)/3)/2)/5 + i*5^(3/4)*13^(1/4)*sin(atan(sqrt(251)/3)/2)/5))*(p - 5^(3/4)*13^(1/4)*cos(atan(sqrt(251)/3)/2)/5 - i*5^(3/4)*13^(1/4)*sin(atan(sqrt(251)/3)/2)/5)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(5 p^{4} - 3 p^{2}\right) + 13$$
To do this, let's use the formula
$$a p^{4} + b p^{2} + c = a \left(m + p^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 5$$
$$b = -3$$
$$c = 13$$
Then
$$m = - \frac{3}{10}$$
$$n = \frac{251}{20}$$
So,
$$5 \left(p^{2} - \frac{3}{10}\right)^{2} + \frac{251}{20}$$
General simplification
[src]
$$5 p^{4} - 3 p^{2} + 13$$
$$5 p^{4} - 3 p^{2} + 13$$
$$5 p^{4} - 3 p^{2} + 13$$
Rational denominator
[src]
$$5 p^{4} - 3 p^{2} + 13$$
$$5 p^{4} - 3 p^{2} + 13$$
Combining rational expressions
[src]
2 / 2\
13 + p *\-3 + 5*p /
$$p^{2} \left(5 p^{2} - 3\right) + 13$$
$$5 p^{4} - 3 p^{2} + 13$$
Assemble expression
[src]
$$5 p^{4} - 3 p^{2} + 13$$