Mister Exam

Factor polynomial x^2-x-2

An expression to simplify:

The solution

You have entered [src]
 2        
x  - x - 2
$$\left(x^{2} - x\right) - 2$$
x^2 - x - 2
General simplification [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Factorization [src]
(x + 1)*(x - 2)
$$\left(x - 2\right) \left(x + 1\right)$$
(x + 1)*(x - 2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - x\right) - 2$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -1$$
$$c = -2$$
Then
$$m = - \frac{1}{2}$$
$$n = - \frac{9}{4}$$
So,
$$\left(x - \frac{1}{2}\right)^{2} - \frac{9}{4}$$
Numerical answer [src]
-2.0 + x^2 - x
-2.0 + x^2 - x
Powers [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Trigonometric part [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Rational denominator [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Assemble expression [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Common denominator [src]
      2    
-2 + x  - x
$$x^{2} - x - 2$$
-2 + x^2 - x
Combinatorics [src]
(1 + x)*(-2 + x)
$$\left(x - 2\right) \left(x + 1\right)$$
(1 + x)*(-2 + x)
Combining rational expressions [src]
-2 + x*(-1 + x)
$$x \left(x - 1\right) - 2$$
-2 + x*(-1 + x)