Mister Exam

Other calculators

Least common denominator ((3*c+1)/(c-1)+c)/(c+1)

An expression to simplify:

The solution

You have entered [src]
3*c + 1    
------- + c
 c - 1     
-----------
   c + 1   
$$\frac{c + \frac{3 c + 1}{c - 1}}{c + 1}$$
((3*c + 1)/(c - 1) + c)/(c + 1)
General simplification [src]
1 + c 
------
-1 + c
$$\frac{c + 1}{c - 1}$$
(1 + c)/(-1 + c)
Fraction decomposition [src]
1 + 2/(-1 + c)
$$1 + \frac{2}{c - 1}$$
      2   
1 + ------
    -1 + c
Common denominator [src]
      2   
1 + ------
    -1 + c
$$1 + \frac{2}{c - 1}$$
1 + 2/(-1 + c)
Numerical answer [src]
(c + (1.0 + 3.0*c)/(-1.0 + c))/(1.0 + c)
(c + (1.0 + 3.0*c)/(-1.0 + c))/(1.0 + c)
Combinatorics [src]
1 + c 
------
-1 + c
$$\frac{c + 1}{c - 1}$$
(1 + c)/(-1 + c)
Combining rational expressions [src]
1 + 3*c + c*(-1 + c)
--------------------
  (1 + c)*(-1 + c)  
$$\frac{c \left(c - 1\right) + 3 c + 1}{\left(c - 1\right) \left(c + 1\right)}$$
(1 + 3*c + c*(-1 + c))/((1 + c)*(-1 + c))
Rational denominator [src]
1 + 3*c + c*(-1 + c)
--------------------
  (1 + c)*(-1 + c)  
$$\frac{c \left(c - 1\right) + 3 c + 1}{\left(c - 1\right) \left(c + 1\right)}$$
(1 + 3*c + c*(-1 + c))/((1 + c)*(-1 + c))