General simplification
[src]
/ 2 \ x
\1 - x + 2*x/*e
-----------------
2
/ 2\
\-1 + x /
$$\frac{\left(- x^{2} + 2 x + 1\right) e^{x}}{\left(x^{2} - 1\right)^{2}}$$
(1 - x^2 + 2*x)*exp(x)/(-1 + x^2)^2
/ 2 \ x
-\-1 + x - 2*x/*e
--------------------
2 2
(1 + x) *(-1 + x)
$$- \frac{\left(x^{2} - 2 x - 1\right) e^{x}}{\left(x - 1\right)^{2} \left(x + 1\right)^{2}}$$
-(-1 + x^2 - 2*x)*exp(x)/((1 + x)^2*(-1 + x)^2)
Rational denominator
[src]
2
/ 2\ x / 2\ x
\1 - x / *e + 2*x*\1 - x /*e
------------------------------
3
/ 2\
\1 - x /
$$\frac{2 x \left(1 - x^{2}\right) e^{x} + \left(1 - x^{2}\right)^{2} e^{x}}{\left(1 - x^{2}\right)^{3}}$$
((1 - x^2)^2*exp(x) + 2*x*(1 - x^2)*exp(x))/(1 - x^2)^3
exp(x)/(1.0 - x^2) + 2.0*x*exp(x)/(1.0 - x^2)^2
exp(x)/(1.0 - x^2) + 2.0*x*exp(x)/(1.0 - x^2)^2
/ x 2 x x\
-\- e + x *e - 2*x*e /
-------------------------
4 2
1 + x - 2*x
$$- \frac{x^{2} e^{x} - 2 x e^{x} - e^{x}}{x^{4} - 2 x^{2} + 1}$$
-(-exp(x) + x^2*exp(x) - 2*x*exp(x))/(1 + x^4 - 2*x^2)
Combining rational expressions
[src]
/ 2 \ x
\1 - x + 2*x/*e
-----------------
2
/ 2\
\1 - x /
$$\frac{\left(- x^{2} + 2 x + 1\right) e^{x}}{\left(1 - x^{2}\right)^{2}}$$
(1 - x^2 + 2*x)*exp(x)/(1 - x^2)^2
cosh(x) + sinh(x) 2*x*(cosh(x) + sinh(x))
- ----------------- + -----------------------
2 2
-1 + x / 2\
\-1 + x /
$$\frac{2 x \left(\sinh{\left(x \right)} + \cosh{\left(x \right)}\right)}{\left(x^{2} - 1\right)^{2}} - \frac{\sinh{\left(x \right)} + \cosh{\left(x \right)}}{x^{2} - 1}$$
cosh(x) + sinh(x) 2*x*(cosh(x) + sinh(x))
----------------- + -----------------------
2 2
1 - x / 2\
\1 - x /
$$\frac{2 x \left(\sinh{\left(x \right)} + \cosh{\left(x \right)}\right)}{\left(1 - x^{2}\right)^{2}} + \frac{\sinh{\left(x \right)} + \cosh{\left(x \right)}}{1 - x^{2}}$$
(cosh(x) + sinh(x))/(1 - x^2) + 2*x*(cosh(x) + sinh(x))/(1 - x^2)^2