Mister Exam

Factor x^2-x-5 squared

An expression to simplify:

The solution

You have entered [src]
 2        
x  - x - 5
$$\left(x^{2} - x\right) - 5$$
x^2 - x - 5
General simplification [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - x\right) - 5$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -1$$
$$c = -5$$
Then
$$m = - \frac{1}{2}$$
$$n = - \frac{21}{4}$$
So,
$$\left(x - \frac{1}{2}\right)^{2} - \frac{21}{4}$$
Factorization [src]
/            ____\ /            ____\
|      1   \/ 21 | |      1   \/ 21 |
|x + - - + ------|*|x + - - - ------|
\      2     2   / \      2     2   /
$$\left(x + \left(- \frac{1}{2} + \frac{\sqrt{21}}{2}\right)\right) \left(x + \left(- \frac{\sqrt{21}}{2} - \frac{1}{2}\right)\right)$$
(x - 1/2 + sqrt(21)/2)*(x - 1/2 - sqrt(21)/2)
Powers [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Combinatorics [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Assemble expression [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Common denominator [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Rational denominator [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Numerical answer [src]
-5.0 + x^2 - x
-5.0 + x^2 - x
Trigonometric part [src]
      2    
-5 + x  - x
$$x^{2} - x - 5$$
-5 + x^2 - x
Combining rational expressions [src]
-5 + x*(-1 + x)
$$x \left(x - 1\right) - 5$$
-5 + x*(-1 + x)