Mister Exam

Other calculators

Least common denominator log((6*x-2*sqrt(21))/(2*sqrt(21)+6*x))/(2*sqrt(21))

An expression to simplify:

The solution

You have entered [src]
   /          ____\
   |6*x - 2*\/ 21 |
log|--------------|
   |    ____      |
   \2*\/ 21  + 6*x/
-------------------
          ____     
      2*\/ 21      
$$\frac{\log{\left(\frac{6 x - 2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{2 \sqrt{21}}$$
log((6*x - 2*sqrt(21))/(2*sqrt(21) + 6*x))/((2*sqrt(21)))
General simplification [src]
          /    ____      \
  ____    |- \/ 21  + 3*x|
\/ 21 *log|--------------|
          |   ____       |
          \ \/ 21  + 3*x /
--------------------------
            42            
$$\frac{\sqrt{21} \log{\left(\frac{3 x - \sqrt{21}}{3 x + \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((-sqrt(21) + 3*x)/(sqrt(21) + 3*x))/42
Fraction decomposition [src]
sqrt(21)*log(-2*sqrt(21)/(2*sqrt(21) + 6*x) + 6*x/(2*sqrt(21) + 6*x))/42
$$\frac{\sqrt{21} \log{\left(\frac{6 x}{6 x + 2 \sqrt{21}} - \frac{2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
          /         ____                    \
  ____    |     2*\/ 21            6*x      |
\/ 21 *log|- -------------- + --------------|
          |      ____             ____      |
          \  2*\/ 21  + 6*x   2*\/ 21  + 6*x/
---------------------------------------------
                      42                     
Rational denominator [src]
          /       2         ____\
  ____    |7 + 3*x  - 2*x*\/ 21 |
\/ 21 *log|---------------------|
          |              2      |
          \      -7 + 3*x       /
---------------------------------
                42               
$$\frac{\sqrt{21} \log{\left(\frac{3 x^{2} - 2 \sqrt{21} x + 7}{3 x^{2} - 7} \right)}}{42}$$
sqrt(21)*log((7 + 3*x^2 - 2*x*sqrt(21))/(-7 + 3*x^2))/42
Numerical answer [src]
0.109108945117996*log((6*x - 2*sqrt(21))/(2*sqrt(21) + 6*x))
0.109108945117996*log((6*x - 2*sqrt(21))/(2*sqrt(21) + 6*x))
Powers [src]
          /      ____      \
  ____    |- 2*\/ 21  + 6*x|
\/ 21 *log|----------------|
          |     ____       |
          \ 2*\/ 21  + 6*x /
----------------------------
             42             
$$\frac{\sqrt{21} \log{\left(\frac{6 x - 2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((-2*sqrt(21) + 6*x)/(2*sqrt(21) + 6*x))/42
Combining rational expressions [src]
          /    ____      \
  ____    |- \/ 21  + 3*x|
\/ 21 *log|--------------|
          |   ____       |
          \ \/ 21  + 3*x /
--------------------------
            42            
$$\frac{\sqrt{21} \log{\left(\frac{3 x - \sqrt{21}}{3 x + \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((-sqrt(21) + 3*x)/(sqrt(21) + 3*x))/42
Trigonometric part [src]
          /      ____      \
  ____    |- 2*\/ 21  + 6*x|
\/ 21 *log|----------------|
          |     ____       |
          \ 2*\/ 21  + 6*x /
----------------------------
             42             
$$\frac{\sqrt{21} \log{\left(\frac{6 x - 2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((-2*sqrt(21) + 6*x)/(2*sqrt(21) + 6*x))/42
Common denominator [src]
          /       ____                  \
  ____    |     \/ 21           3*x     |
\/ 21 *log|- ------------ + ------------|
          |    ____           ____      |
          \  \/ 21  + 3*x   \/ 21  + 3*x/
-----------------------------------------
                    42                   
$$\frac{\sqrt{21} \log{\left(\frac{3 x}{3 x + \sqrt{21}} - \frac{\sqrt{21}}{3 x + \sqrt{21}} \right)}}{42}$$
sqrt(21)*log(-sqrt(21)/(sqrt(21) + 3*x) + 3*x/(sqrt(21) + 3*x))/42
Combinatorics [src]
          /         ____                    \
  ____    |     2*\/ 21            6*x      |
\/ 21 *log|- -------------- + --------------|
          |      ____             ____      |
          \  2*\/ 21  + 6*x   2*\/ 21  + 6*x/
---------------------------------------------
                      42                     
$$\frac{\sqrt{21} \log{\left(\frac{6 x}{6 x + 2 \sqrt{21}} - \frac{2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
sqrt(21)*log(-2*sqrt(21)/(2*sqrt(21) + 6*x) + 6*x/(2*sqrt(21) + 6*x))/42
Assemble expression [src]
          /          ____\
  ____    |6*x - 2*\/ 21 |
\/ 21 *log|--------------|
          |    ____      |
          \2*\/ 21  + 6*x/
--------------------------
            42            
$$\frac{\sqrt{21} \log{\left(\frac{6 x - 2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((6*x - 2*sqrt(21))/(2*sqrt(21) + 6*x))/42
Expand expression [src]
          /          ____\
  ____    |6*x - 2*\/ 21 |
\/ 21 *log|--------------|
          |    ____      |
          \2*\/ 21  + 6*x/
--------------------------
            42            
$$\frac{\sqrt{21} \log{\left(\frac{6 x - 2 \sqrt{21}}{6 x + 2 \sqrt{21}} \right)}}{42}$$
sqrt(21)*log((6*x - 2*sqrt(21))/(2*sqrt(21) + 6*x))/42