Mister Exam

Other calculators:


x^4-4*x^2

Limit of the function x^4-4*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 4      2\
 lim \x  - 4*x /
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} - 4 x^{2}\right)$$
Limit(x^4 - 4*x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     / 4      2\
 lim \x  - 4*x /
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} - 4 x^{2}\right)$$
0
$$0$$
= -1.39851130208874e-30
     / 4      2\
 lim \x  - 4*x /
x->0-           
$$\lim_{x \to 0^-}\left(x^{4} - 4 x^{2}\right)$$
0
$$0$$
= -1.39851130208874e-30
= -1.39851130208874e-30
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{4} - 4 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{4} - 4 x^{2}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{4} - 4 x^{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{4} - 4 x^{2}\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{4} - 4 x^{2}\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{4} - 4 x^{2}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-1.39851130208874e-30
-1.39851130208874e-30
The graph
Limit of the function x^4-4*x^2