Mister Exam

Other calculators:


-6+x^2+5*x

Limit of the function -6+x^2+5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2      \
 lim \-6 + x  + 5*x/
x->1+               
$$\lim_{x \to 1^+}\left(5 x + \left(x^{2} - 6\right)\right)$$
Limit(-6 + x^2 + 5*x, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /      2      \
 lim \-6 + x  + 5*x/
x->1+               
$$\lim_{x \to 1^+}\left(5 x + \left(x^{2} - 6\right)\right)$$
0
$$0$$
= -3.69358319535541e-32
     /      2      \
 lim \-6 + x  + 5*x/
x->1-               
$$\lim_{x \to 1^-}\left(5 x + \left(x^{2} - 6\right)\right)$$
0
$$0$$
= -1.56725328036621e-31
= -1.56725328036621e-31
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(5 x + \left(x^{2} - 6\right)\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(5 x + \left(x^{2} - 6\right)\right) = 0$$
$$\lim_{x \to \infty}\left(5 x + \left(x^{2} - 6\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(5 x + \left(x^{2} - 6\right)\right) = -6$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(5 x + \left(x^{2} - 6\right)\right) = -6$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(5 x + \left(x^{2} - 6\right)\right) = \infty$$
More at x→-oo
Numerical answer [src]
-3.69358319535541e-32
-3.69358319535541e-32
The graph
Limit of the function -6+x^2+5*x