Mister Exam

Other calculators:


((-2+x)/x)^(2*x)

Limit of the function ((-2+x)/x)^(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2*x
     /-2 + x\   
 lim |------|   
x->oo\  x   /   
limx(x2x)2x\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}
Limit(((-2 + x)/x)^(2*x), x, oo, dir='-')
Detail solution
Let's take the limit
limx(x2x)2x\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}
transform
limx(x2x)2x\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}
=
limx(x2x)2x\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}
=
limx(2x+xx)2x\lim_{x \to \infty} \left(- \frac{2}{x} + \frac{x}{x}\right)^{2 x}
=
limx(12x)2x\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{2 x}
=
do replacement
u=x2u = \frac{x}{-2}
then
limx(12x)2x\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{2 x} =
=
limu(1+1u)4u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 4 u}
=
limu(1+1u)4u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 4 u}
=
((limu(1+1u)u))4\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))4=e4\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4} = e^{-4}

The final answer:
limx(x2x)2x=e4\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.01.0
Rapid solution [src]
 -4
e  
e4e^{-4}
Other limits x→0, -oo, +oo, 1
limx(x2x)2x=e4\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}
limx0(x2x)2x=1\lim_{x \to 0^-} \left(\frac{x - 2}{x}\right)^{2 x} = 1
More at x→0 from the left
limx0+(x2x)2x=1\lim_{x \to 0^+} \left(\frac{x - 2}{x}\right)^{2 x} = 1
More at x→0 from the right
limx1(x2x)2x=1\lim_{x \to 1^-} \left(\frac{x - 2}{x}\right)^{2 x} = 1
More at x→1 from the left
limx1+(x2x)2x=1\lim_{x \to 1^+} \left(\frac{x - 2}{x}\right)^{2 x} = 1
More at x→1 from the right
limx(x2x)2x=e4\lim_{x \to -\infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}
More at x→-oo
The graph
Limit of the function ((-2+x)/x)^(2*x)