Mister Exam

Other calculators:


((-2+x)/x)^(2*x)

Limit of the function ((-2+x)/x)^(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2*x
     /-2 + x\   
 lim |------|   
x->oo\  x   /   
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}$$
Limit(((-2 + x)/x)^(2*x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}$$
transform
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}$$
=
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x}$$
=
$$\lim_{x \to \infty} \left(- \frac{2}{x} + \frac{x}{x}\right)^{2 x}$$
=
$$\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{2 x}$$
=
do replacement
$$u = \frac{x}{-2}$$
then
$$\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{2 x}$$ =
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 4 u}$$
=
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 4 u}$$
=
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4}$$
The limit
$$\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4} = e^{-4}$$

The final answer:
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
 -4
e  
$$e^{-4}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}$$
$$\lim_{x \to 0^-} \left(\frac{x - 2}{x}\right)^{2 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{x - 2}{x}\right)^{2 x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{x - 2}{x}\right)^{2 x} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{x - 2}{x}\right)^{2 x} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{x - 2}{x}\right)^{2 x} = e^{-4}$$
More at x→-oo
The graph
Limit of the function ((-2+x)/x)^(2*x)