Mister Exam

Other calculators:


-2+x^3+6*x

Limit of the function -2+x^3+6*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      3      \
 lim \-2 + x  + 6*x/
x->3+               
$$\lim_{x \to 3^+}\left(6 x + \left(x^{3} - 2\right)\right)$$
Limit(-2 + x^3 + 6*x, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
43
$$43$$
One‐sided limits [src]
     /      3      \
 lim \-2 + x  + 6*x/
x->3+               
$$\lim_{x \to 3^+}\left(6 x + \left(x^{3} - 2\right)\right)$$
43
$$43$$
= 43.0
     /      3      \
 lim \-2 + x  + 6*x/
x->3-               
$$\lim_{x \to 3^-}\left(6 x + \left(x^{3} - 2\right)\right)$$
43
$$43$$
= 43.0
= 43.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(6 x + \left(x^{3} - 2\right)\right) = 43$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(6 x + \left(x^{3} - 2\right)\right) = 43$$
$$\lim_{x \to \infty}\left(6 x + \left(x^{3} - 2\right)\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(6 x + \left(x^{3} - 2\right)\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(6 x + \left(x^{3} - 2\right)\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(6 x + \left(x^{3} - 2\right)\right) = 5$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(6 x + \left(x^{3} - 2\right)\right) = 5$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(6 x + \left(x^{3} - 2\right)\right) = -\infty$$
More at x→-oo
Numerical answer [src]
43.0
43.0
The graph
Limit of the function -2+x^3+6*x