$$\lim_{x \to 3^+}\left(6 x + \left(x^{3} - 2\right)\right)$$
43
$$43$$
= 43.0
/ 3 \
lim \-2 + x + 6*x/
x->3-
$$\lim_{x \to 3^-}\left(6 x + \left(x^{3} - 2\right)\right)$$
43
$$43$$
= 43.0
= 43.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(6 x + \left(x^{3} - 2\right)\right) = 43$$ More at x→3 from the left $$\lim_{x \to 3^+}\left(6 x + \left(x^{3} - 2\right)\right) = 43$$ $$\lim_{x \to \infty}\left(6 x + \left(x^{3} - 2\right)\right) = \infty$$ More at x→oo $$\lim_{x \to 0^-}\left(6 x + \left(x^{3} - 2\right)\right) = -2$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(6 x + \left(x^{3} - 2\right)\right) = -2$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(6 x + \left(x^{3} - 2\right)\right) = 5$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(6 x + \left(x^{3} - 2\right)\right) = 5$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(6 x + \left(x^{3} - 2\right)\right) = -\infty$$ More at x→-oo