$$\lim_{x \to 2^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = 0$$
More at x→2 from the left$$\lim_{x \to 2^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = \infty$$
More at x→oo$$\lim_{x \to 0^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - 2 \log{\left(2 \right)} - 2 i \pi$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - 2 \log{\left(2 \right)} - 2 i \pi$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - i \pi$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - i \pi$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = -\infty$$
More at x→-oo