Mister Exam

Other calculators:


(-2+x)*log(-2+x)

Limit of the function (-2+x)*log(-2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim ((-2 + x)*log(-2 + x))
x->2+                      
$$\lim_{x \to 2^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right)$$
Limit((-2 + x)*log(-2 + x), x, 2)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = 0$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - 2 \log{\left(2 \right)} - 2 i \pi$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - 2 \log{\left(2 \right)} - 2 i \pi$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - i \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = - i \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim ((-2 + x)*log(-2 + x))
x->2+                      
$$\lim_{x \to 2^+}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right)$$
0
$$0$$
= -0.002013543998355
 lim ((-2 + x)*log(-2 + x))
x->2-                      
$$\lim_{x \to 2^-}\left(\left(x - 2\right) \log{\left(x - 2 \right)}\right)$$
0
$$0$$
= (0.00193929632169612 - 0.00084074776060362j)
= (0.00193929632169612 - 0.00084074776060362j)
Numerical answer [src]
-0.002013543998355
-0.002013543998355
The graph
Limit of the function (-2+x)*log(-2+x)