Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (x/(1+2*x))^x
Limit of sin(3)^2/x
Limit of x*2^x*3^(-x)
Limit of -sin(x)+tan(x)
Derivative of
:
x+e^x
Factor polynomial
:
x+e^x
Identical expressions
x+e^x
x plus e to the power of x
x+ex
Similar expressions
x*e^(x/2)/(x+e^x)
x-e^x
x+e^x*(1+x)
Limit of the function
/
x+e^x
Limit of the function x+e^x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ lim \x + e / x->oo
$$\lim_{x \to \infty}\left(x + e^{x}\right)$$
Limit(x + E^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x + e^{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x + e^{x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x + e^{x}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x + e^{x}\right) = 1 + e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x + e^{x}\right) = 1 + e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x + e^{x}\right) = -\infty$$
More at x→-oo
The graph