$$\lim_{x \to 0^-}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
More at x→oo$$\lim_{x \to 1^-}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = - \sin{\left(1 \right)} + \tan{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = - \sin{\left(1 \right)} + \tan{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
More at x→-oo