Mister Exam

Other calculators:


-sin(x)+tan(x)

Limit of the function -sin(x)+tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-sin(x) + tan(x))
x->0+                  
$$\lim_{x \to 0^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
Limit(-sin(x) + tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = - \sin{\left(1 \right)} + \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right) = - \sin{\left(1 \right)} + \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (-sin(x) + tan(x))
x->0+                  
$$\lim_{x \to 0^+}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
0
$$0$$
= 1.76065917377388e-30
 lim (-sin(x) + tan(x))
x->0-                  
$$\lim_{x \to 0^-}\left(- \sin{\left(x \right)} + \tan{\left(x \right)}\right)$$
0
$$0$$
= -1.76065917377388e-30
= -1.76065917377388e-30
Numerical answer [src]
1.76065917377388e-30
1.76065917377388e-30
The graph
Limit of the function -sin(x)+tan(x)