$$\lim_{x \to \infty}\left(2^{x} 3^{- x} x\right) = 0$$ $$\lim_{x \to 0^-}\left(2^{x} 3^{- x} x\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(2^{x} 3^{- x} x\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(2^{x} 3^{- x} x\right) = \frac{2}{3}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(2^{x} 3^{- x} x\right) = \frac{2}{3}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(2^{x} 3^{- x} x\right) = -\infty$$ More at x→-oo