Mister Exam

Other calculators:


sin(3)^2/x

Limit of the function sin(3)^2/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2   \
     |sin (3)|
 lim |-------|
x->0+\   x   /
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right)$$
Limit(sin(3)^2/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = \sin^{2}{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = \sin^{2}{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /   2   \
     |sin (3)|
 lim |-------|
x->0+\   x   /
$$\lim_{x \to 0^+}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right)$$
oo
$$\infty$$
= 3.00714335789737
     /   2   \
     |sin (3)|
 lim |-------|
x->0-\   x   /
$$\lim_{x \to 0^-}\left(\frac{\sin^{2}{\left(3 \right)}}{x}\right)$$
-oo
$$-\infty$$
= -3.00714335789737
= -3.00714335789737
Rapid solution [src]
oo
$$\infty$$
Numerical answer [src]
3.00714335789737
3.00714335789737
The graph
Limit of the function sin(3)^2/x