Mister Exam

Limit of the function x*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*tan(x))
x->0+          
$$\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right)$$
Limit(x*tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim (x*tan(x))
x->0+          
$$\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right)$$
0
$$0$$
= -2.71625989441904e-30
 lim (x*tan(x))
x->0-          
$$\lim_{x \to 0^-}\left(x \tan{\left(x \right)}\right)$$
0
$$0$$
= -2.71625989441904e-30
= -2.71625989441904e-30
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \tan{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x \tan{\left(x \right)}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \tan{\left(x \right)}\right) = \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \tan{\left(x \right)}\right) = \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \tan{\left(x \right)}\right)$$
More at x→-oo
Numerical answer [src]
-2.71625989441904e-30
-2.71625989441904e-30
The graph
Limit of the function x*tan(x)