Mister Exam

Other calculators:


x*tan(x)

Limit of the function x*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (x*tan(x))
x->0+          
limx0+(xtan(x))\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right)
Limit(x*tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-250250
Rapid solution [src]
0
00
One‐sided limits [src]
 lim (x*tan(x))
x->0+          
limx0+(xtan(x))\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right)
0
00
= -2.71625989441904e-30
 lim (x*tan(x))
x->0-          
limx0(xtan(x))\lim_{x \to 0^-}\left(x \tan{\left(x \right)}\right)
0
00
= -2.71625989441904e-30
= -2.71625989441904e-30
Other limits x→0, -oo, +oo, 1
limx0(xtan(x))=0\lim_{x \to 0^-}\left(x \tan{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(xtan(x))=0\lim_{x \to 0^+}\left(x \tan{\left(x \right)}\right) = 0
limx(xtan(x))\lim_{x \to \infty}\left(x \tan{\left(x \right)}\right)
More at x→oo
limx1(xtan(x))=tan(1)\lim_{x \to 1^-}\left(x \tan{\left(x \right)}\right) = \tan{\left(1 \right)}
More at x→1 from the left
limx1+(xtan(x))=tan(1)\lim_{x \to 1^+}\left(x \tan{\left(x \right)}\right) = \tan{\left(1 \right)}
More at x→1 from the right
limx(xtan(x))\lim_{x \to -\infty}\left(x \tan{\left(x \right)}\right)
More at x→-oo
Numerical answer [src]
-2.71625989441904e-30
-2.71625989441904e-30
The graph
Limit of the function x*tan(x)