Mister Exam

Other calculators:


e^(-x)*tan(x)

Limit of the function e^(-x)*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x       \
 lim \E  *tan(x)/
x->oo            
limx(extan(x))\lim_{x \to \infty}\left(e^{- x} \tan{\left(x \right)}\right)
Limit(E^(-x)*tan(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5000050000
Other limits x→0, -oo, +oo, 1
limx(extan(x))=0\lim_{x \to \infty}\left(e^{- x} \tan{\left(x \right)}\right) = 0
limx0(extan(x))=0\lim_{x \to 0^-}\left(e^{- x} \tan{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(extan(x))=0\lim_{x \to 0^+}\left(e^{- x} \tan{\left(x \right)}\right) = 0
More at x→0 from the right
limx1(extan(x))=tan(1)e\lim_{x \to 1^-}\left(e^{- x} \tan{\left(x \right)}\right) = \frac{\tan{\left(1 \right)}}{e}
More at x→1 from the left
limx1+(extan(x))=tan(1)e\lim_{x \to 1^+}\left(e^{- x} \tan{\left(x \right)}\right) = \frac{\tan{\left(1 \right)}}{e}
More at x→1 from the right
limx(extan(x))\lim_{x \to -\infty}\left(e^{- x} \tan{\left(x \right)}\right)
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function e^(-x)*tan(x)