$$\lim_{x \to 0^-} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = 1$$
$$\lim_{x \to \infty} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}$$
More at x→oo$$\lim_{x \to 1^-} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = \frac{\pi^{\tan{\left(1 \right)}}}{2^{2 \tan{\left(1 \right)}}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = \frac{\pi^{\tan{\left(1 \right)}}}{2^{2 \tan{\left(1 \right)}}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}$$
More at x→-oo