Mister Exam

Other calculators:


acot(x)^tan(x)

Limit of the function acot(x)^tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         tan(x)   
 lim acot      (x)
x->0+             
limx0+acottan(x)(x)\lim_{x \to 0^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}
Limit(acot(x)^tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010050000000000000000000
Rapid solution [src]
1
11
One‐sided limits [src]
         tan(x)   
 lim acot      (x)
x->0+             
limx0+acottan(x)(x)\lim_{x \to 0^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}
1
11
= 1.0
         tan(x)   
 lim acot      (x)
x->0-             
limx0acottan(x)(x)\lim_{x \to 0^-} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}
1
11
= (1.0 + 7.25708536419871e-27j)
= (1.0 + 7.25708536419871e-27j)
Other limits x→0, -oo, +oo, 1
limx0acottan(x)(x)=1\lim_{x \to 0^-} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = 1
More at x→0 from the left
limx0+acottan(x)(x)=1\lim_{x \to 0^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = 1
limxacottan(x)(x)\lim_{x \to \infty} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}
More at x→oo
limx1acottan(x)(x)=πtan(1)22tan(1)\lim_{x \to 1^-} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = \frac{\pi^{\tan{\left(1 \right)}}}{2^{2 \tan{\left(1 \right)}}}
More at x→1 from the left
limx1+acottan(x)(x)=πtan(1)22tan(1)\lim_{x \to 1^+} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)} = \frac{\pi^{\tan{\left(1 \right)}}}{2^{2 \tan{\left(1 \right)}}}
More at x→1 from the right
limxacottan(x)(x)\lim_{x \to -\infty} \operatorname{acot}^{\tan{\left(x \right)}}{\left(x \right)}
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function acot(x)^tan(x)