Mister Exam

Other calculators:


log(x)*tan(x)/cos(2*x)

Limit of the function log(x)*tan(x)/cos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /log(x)*tan(x)\
 lim  |-------------|
   pi \   cos(2*x)  /
x->--+               
   4                 
limxπ4+(log(x)tan(x)cos(2x))\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right)
Limit((log(x)*tan(x))/cos(2*x), x, pi/4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-1.50-1.25-1.00-0.75-0.50-0.250.000.250.500.751.001.251.50-1000000000000000010000000000000000
Rapid solution [src]
oo
\infty
One‐sided limits [src]
      /log(x)*tan(x)\
 lim  |-------------|
   pi \   cos(2*x)  /
x->--+               
   4                 
limxπ4+(log(x)tan(x)cos(2x))\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right)
oo
\infty
= 17.8394143979694
      /log(x)*tan(x)\
 lim  |-------------|
   pi \   cos(2*x)  /
x->---               
   4                 
limxπ4(log(x)tan(x)cos(2x))\lim_{x \to \frac{\pi}{4}^-}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right)
-oo
-\infty
= -18.6295906058945
= -18.6295906058945
Other limits x→0, -oo, +oo, 1
limxπ4(log(x)tan(x)cos(2x))=\lim_{x \to \frac{\pi}{4}^-}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = \infty
More at x→pi/4 from the left
limxπ4+(log(x)tan(x)cos(2x))=\lim_{x \to \frac{\pi}{4}^+}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = \infty
limx(log(x)tan(x)cos(2x))\lim_{x \to \infty}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right)
More at x→oo
limx0(log(x)tan(x)cos(2x))=0\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = 0
More at x→0 from the left
limx0+(log(x)tan(x)cos(2x))=0\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = 0
More at x→0 from the right
limx1(log(x)tan(x)cos(2x))=0\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = 0
More at x→1 from the left
limx1+(log(x)tan(x)cos(2x))=0\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right) = 0
More at x→1 from the right
limx(log(x)tan(x)cos(2x))\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)} \tan{\left(x \right)}}{\cos{\left(2 x \right)}}\right)
More at x→-oo
Numerical answer [src]
17.8394143979694
17.8394143979694
The graph
Limit of the function log(x)*tan(x)/cos(2*x)