Mister Exam

Other calculators:


tan(sqrt(x))

Limit of the function tan(sqrt(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /  ___\
 lim tan\\/ x /
x->oo          
$$\lim_{x \to \infty} \tan{\left(\sqrt{x} \right)}$$
Limit(tan(sqrt(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \tan{\left(\sqrt{x} \right)} = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to 0^-} \tan{\left(\sqrt{x} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan{\left(\sqrt{x} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \tan{\left(\sqrt{x} \right)} = \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan{\left(\sqrt{x} \right)} = \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan{\left(\sqrt{x} \right)} = i$$
More at x→-oo
The graph
Limit of the function tan(sqrt(x))