Mister Exam

Other calculators:


9-4*e^x

Limit of the function 9-4*e^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       x\
 lim \9 - 4*E /
x->0+          
$$\lim_{x \to 0^+}\left(9 - 4 e^{x}\right)$$
Limit(9 - 4*exp(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
5
$$5$$
One‐sided limits [src]
     /       x\
 lim \9 - 4*E /
x->0+          
$$\lim_{x \to 0^+}\left(9 - 4 e^{x}\right)$$
5
$$5$$
= 5.0
     /       x\
 lim \9 - 4*E /
x->0-          
$$\lim_{x \to 0^-}\left(9 - 4 e^{x}\right)$$
5
$$5$$
= 5.0
= 5.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(9 - 4 e^{x}\right) = 5$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(9 - 4 e^{x}\right) = 5$$
$$\lim_{x \to \infty}\left(9 - 4 e^{x}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(9 - 4 e^{x}\right) = 9 - 4 e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(9 - 4 e^{x}\right) = 9 - 4 e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(9 - 4 e^{x}\right) = 9$$
More at x→-oo
Numerical answer [src]
5.0
5.0
The graph
Limit of the function 9-4*e^x