Mister Exam

Integral of tan(sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |     /  ___\   
 |  tan\\/ x / dx
 |               
/                
0                
$$\int\limits_{0}^{1} \tan{\left(\sqrt{x} \right)}\, dx$$
Integral(tan(sqrt(x)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                         /             
  /                     |              
 |                      |    /  ___\   
 |    /  ___\           | sin\\/ x /   
 | tan\\/ x / dx = C +  | ---------- dx
 |                      |    /  ___\   
/                       | cos\\/ x /   
                        |              
                       /               
$$\int \tan{\left(\sqrt{x} \right)}\, dx = C + \int \frac{\sin{\left(\sqrt{x} \right)}}{\cos{\left(\sqrt{x} \right)}}\, dx$$
The answer [src]
  1              
  /              
 |               
 |     /  ___\   
 |  tan\\/ x / dx
 |               
/                
0                
$$\int\limits_{0}^{1} \tan{\left(\sqrt{x} \right)}\, dx$$
=
=
  1              
  /              
 |               
 |     /  ___\   
 |  tan\\/ x / dx
 |               
/                
0                
$$\int\limits_{0}^{1} \tan{\left(\sqrt{x} \right)}\, dx$$
Integral(tan(sqrt(x)), (x, 0, 1))
Numerical answer [src]
0.856176602730352
0.856176602730352

    Use the examples entering the upper and lower limits of integration.