Mister Exam

Other calculators:


-2+|-2+x|/x

Limit of the function -2+|-2+x|/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     |-2 + x|\
 lim |-2 + --------|
x->2+\        x    /
$$\lim_{x \to 2^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right)$$
Limit(-2 + |-2 + x|/x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-2
$$-2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -2$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -2$$
$$\lim_{x \to \infty}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$
More at x→oo
$$\lim_{x \to 0^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -3$$
More at x→-oo
One‐sided limits [src]
     /     |-2 + x|\
 lim |-2 + --------|
x->2+\        x    /
$$\lim_{x \to 2^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right)$$
-2
$$-2$$
= -2.0
     /     |-2 + x|\
 lim |-2 + --------|
x->2-\        x    /
$$\lim_{x \to 2^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right)$$
-2
$$-2$$
= -2.0
= -2.0
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function -2+|-2+x|/x