$$\lim_{x \to 2^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -2$$ More at x→2 from the left $$\lim_{x \to 2^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -2$$ $$\lim_{x \to \infty}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$ More at x→oo $$\lim_{x \to 0^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -1$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(-2 + \frac{\left|{x - 2}\right|}{x}\right) = -3$$ More at x→-oo