Mister Exam

Other calculators:


(1-cos(4*x))/(5*x)

Limit of the function (1-cos(4*x))/(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 - cos(4*x)\
 lim |------------|
x->0+\    5*x     /
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right)$$
Limit((1 - cos(4*x))/((5*x)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(1 - \cos{\left(4 x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(5 x\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(1 - \cos{\left(4 x \right)}\right)}{\frac{d}{d x} 5 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 \sin{\left(4 x \right)}}{5}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 \sin{\left(4 x \right)}}{5}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /1 - cos(4*x)\
 lim |------------|
x->0+\    5*x     /
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right)$$
0
$$0$$
= 7.85254963568473e-31
     /1 - cos(4*x)\
 lim |------------|
x->0-\    5*x     /
$$\lim_{x \to 0^-}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right)$$
0
$$0$$
= -7.85254963568473e-31
= -7.85254963568473e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = \frac{1}{5} - \frac{\cos{\left(4 \right)}}{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = \frac{1}{5} - \frac{\cos{\left(4 \right)}}{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{1 - \cos{\left(4 x \right)}}{5 x}\right) = 0$$
More at x→-oo
Numerical answer [src]
7.85254963568473e-31
7.85254963568473e-31
The graph
Limit of the function (1-cos(4*x))/(5*x)