Mister Exam

Other calculators:


sqrt(4+x^2)/x

Limit of the function sqrt(4+x^2)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   ________\
     |  /      2 |
     |\/  4 + x  |
 lim |-----------|
x->oo\     x     /
limx(x2+4x)\lim_{x \to \infty}\left(\frac{\sqrt{x^{2} + 4}}{x}\right)
Limit(sqrt(4 + x^2)/x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx2+4=\lim_{x \to \infty} \sqrt{x^{2} + 4} = \infty
and limit for the denominator is
limxx=\lim_{x \to \infty} x = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(x2+4x)\lim_{x \to \infty}\left(\frac{\sqrt{x^{2} + 4}}{x}\right)
=
limx(ddxx2+4ddxx)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \sqrt{x^{2} + 4}}{\frac{d}{d x} x}\right)
=
limx(xx2+4)\lim_{x \to \infty}\left(\frac{x}{\sqrt{x^{2} + 4}}\right)
=
limx(xx2+4)\lim_{x \to \infty}\left(\frac{x}{\sqrt{x^{2} + 4}}\right)
=
11
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limx(x2+4x)=1\lim_{x \to \infty}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = 1
limx0(x2+4x)=\lim_{x \to 0^-}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = -\infty
More at x→0 from the left
limx0+(x2+4x)=\lim_{x \to 0^+}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = \infty
More at x→0 from the right
limx1(x2+4x)=5\lim_{x \to 1^-}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = \sqrt{5}
More at x→1 from the left
limx1+(x2+4x)=5\lim_{x \to 1^+}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = \sqrt{5}
More at x→1 from the right
limx(x2+4x)=1\lim_{x \to -\infty}\left(\frac{\sqrt{x^{2} + 4}}{x}\right) = -1
More at x→-oo
The graph
Limit of the function sqrt(4+x^2)/x