Mister Exam

Other calculators:

You entered:

2^x*2^(-1-x)

What you mean?

Limit of the function 2^x*2^(-1-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x  -1 - x\
 lim \2 *2      /
x->oo            
$$\lim_{x \to \infty}\left(2^{x} 2^{- x - 1}\right)$$
Limit(2^x*2^(-1 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
1/2
$$\frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
$$\lim_{x \to 0^-}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$
More at x→-oo