$$\lim_{x \to \infty}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ $$\lim_{x \to 0^-}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(2^{x} 2^{- x - 1}\right) = \frac{1}{2}$$ More at x→-oo