Mister Exam

Other calculators:


(5+3*x)/(7+2*x)

Limit of the function (5+3*x)/(7+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /5 + 3*x\
 lim |-------|
x->oo\7 + 2*x/
limx(3x+52x+7)\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right)
Limit((5 + 3*x)/(7 + 2*x), x, oo, dir='-')
Detail solution
Let's take the limit
limx(3x+52x+7)\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right)
Let's divide numerator and denominator by x:
limx(3x+52x+7)\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right) =
limx(3+5x2+7x)\lim_{x \to \infty}\left(\frac{3 + \frac{5}{x}}{2 + \frac{7}{x}}\right)
Do Replacement
u=1xu = \frac{1}{x}
then
limx(3+5x2+7x)=limu0+(5u+37u+2)\lim_{x \to \infty}\left(\frac{3 + \frac{5}{x}}{2 + \frac{7}{x}}\right) = \lim_{u \to 0^+}\left(\frac{5 u + 3}{7 u + 2}\right)
=
05+307+2=32\frac{0 \cdot 5 + 3}{0 \cdot 7 + 2} = \frac{3}{2}

The final answer:
limx(3x+52x+7)=32\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{3}{2}
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limx(3x+5)=\lim_{x \to \infty}\left(3 x + 5\right) = \infty
and limit for the denominator is
limx(2x+7)=\lim_{x \to \infty}\left(2 x + 7\right) = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(3x+52x+7)\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right)
=
limx(ddx(3x+5)ddx(2x+7))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(3 x + 5\right)}{\frac{d}{d x} \left(2 x + 7\right)}\right)
=
limx32\lim_{x \to \infty} \frac{3}{2}
=
limx32\lim_{x \to \infty} \frac{3}{2}
=
32\frac{3}{2}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-100100
Rapid solution [src]
3/2
32\frac{3}{2}
Other limits x→0, -oo, +oo, 1
limx(3x+52x+7)=32\lim_{x \to \infty}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{3}{2}
limx0(3x+52x+7)=57\lim_{x \to 0^-}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{5}{7}
More at x→0 from the left
limx0+(3x+52x+7)=57\lim_{x \to 0^+}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{5}{7}
More at x→0 from the right
limx1(3x+52x+7)=89\lim_{x \to 1^-}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{8}{9}
More at x→1 from the left
limx1+(3x+52x+7)=89\lim_{x \to 1^+}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{8}{9}
More at x→1 from the right
limx(3x+52x+7)=32\lim_{x \to -\infty}\left(\frac{3 x + 5}{2 x + 7}\right) = \frac{3}{2}
More at x→-oo
The graph
Limit of the function (5+3*x)/(7+2*x)